Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 604
Filtrar
1.
PLoS One ; 19(4): e0300617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625973

RESUMO

INTRODUCTION: For years, heat treatment has been an essential method for ensuring mature food that meet the desired quality and safety characteristics. However, this process could lead to the formation of harmful compounds such as acrylamide. In this study we aimed to investigate the knowledge, attitudes and practices (KAPs) of the Lebanese population toward the potential risk associated with acrylamide. MATERIALS & METHODS: An online survey (n = 598) was conducted among residents in Lebanon aged 18 years and above. The survey was divided into five sections including participants' sociodemographic characteristics, knowledge, attitude and practice sections, and some questions related to consumer's preferences. RESULTS & DISCUSSION: The results showed that the majority of the participants had low food safety knowledge regarding acrylamide. Specifically, 82.9% of the consumers had no idea about the chemical, its formation, the foods with a high risk of acrylamide formation and the health risks associated with its exposure. Despite lack of knowledge, good domestic food practices (storage, pre-treatment) were noticed among participants. Moreover, the majority of consumers (> 80%) showed positive attitude towards proper acrylamide labeling. Participants with a bachelor's degree appeared to have a more positive attitude toward food safety compared to those with no qualifications (p<0.001). CONCLUSION: Despite the high consumption of acrylamide by the consumers in Lebanon through fried potatoes, bread, and coffee, the majority have no idea about acrylamide's presence in food, its sources and its adverse health effects. Raising awareness among the public, involving policy makers in addressing the issue of clear labeling and encouraging the adoption of alternative practices to reduce acrylamide are all crucial to protect consumers' health in Lebanon and promote healthier food consumption habits.


Assuntos
Acrilamida , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Acrilamida/análise , Café , Inquéritos e Questionários , Alimentos
2.
J Food Sci ; 89(4): 2158-2173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488727

RESUMO

During the frying of foods, undesirable reactions such as protein denaturation, acrylamide formation, and so on occur in the product, which has confirmed carcinogenic effects. The use of antioxidants has been proposed as an effective solution to reduce the formation of these compounds during the process. The current study aimed to assess the impact of an edible coating holding within chia seed gum (CSG) and Rosa canina L. extract (RCE) nanoemulsions on the physicochemical properties, oil uptake, acrylamide formation, 5-hydroxymethyl-2-furfural (HMF) content, and sensory characteristics of beef-turkey burgers. The RCE-loaded nanoemulsions were prepared using the ultrasonic homogenization method, and different concentrations (i.e., 10%, 20%, and 40% w/w) were added to the CSG solutions; these active coatings were used to cover the burgers. CSG-based coatings, especially coatings containing the highest concentration of nanoemulsions (40%), caused a significant decrease in the oil uptake and moisture retention, acrylamide content, and HMF content of fried burgers. The texture of coated burgers was softer than that of uncoated samples; they also had a higher color brightness and a lower browning index. Field emission scanning electron microscopy analysis showed that RCE concentration less than 40% should be used in CSG coatings because it will cause minor cracks, which is an obvious possibility of failure of coating performance. Coating significantly (4-10 times) increased the antioxidant activity of burgers compared to the control. In conclusion, it is suggested to use the active coating produced in this study to improve fried burger quality and modulate acrylamide formation.


Assuntos
Acrilamida , Produtos da Carne , Animais , Bovinos , Acrilamida/análise , Antioxidantes/química , Produtos da Carne/análise
3.
J Agric Food Chem ; 72(12): 6089-6095, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483189

RESUMO

Acrylamide is a probable carcinogen in humans and is formed when reducing sugars react with free asparagine (Asn) during thermal processing of food. Although breeding for low reducing sugars worked well in potatoes, it is less successful in cereals. However, reducing free Asn in cereals has great potential for reducing acrylamide formation, despite the role that Asn plays in nitrogen transport and amino acid biosynthesis. In this perspective, we summarize the efforts aimed at reducing free Asn in cereal grains and discuss the potentials and challenges associated with targeting this essential amino acid, especially in a seed-specific manner.


Assuntos
Acrilamida , Asparagina , Humanos , Asparagina/química , Acrilamida/análise , Melhoramento Vegetal , Sementes/química , Açúcares/análise , Grão Comestível/química , Temperatura Alta
4.
World J Microbiol Biotechnol ; 40(3): 92, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345704

RESUMO

A thermostable L-asparaginase was produced from Bacillus licheniformis UDS-5 (GenBank accession number, OP117154). The production conditions were optimized by the Plackett Burman method, followed by the Box Behnken method, where the enzyme production was enhanced up to fourfold. It secreted L-asparaginase optimally in the medium, pH 7, containing 0.5% (w/v) peptone, 1% (w/v) sodium chloride, 0.15% (w/v) beef extract, 0.15% (w/v) yeast extract, 3% (w/v) L-asparagine at 50 °C for 96 h. The enzyme, with a molecular weight of 85 kDa, was purified by ion exchange chromatography and size exclusion chromatography with better purification fold and percent yield. It displayed optimal catalysis at 70 °C in 20 mM Tris-Cl buffer, pH 8. The purified enzyme also exhibited significant salt tolerance too, making it a suitable candidate for the food application. The L-asparaginase was employed at different doses to evaluate its ability to mitigate acrylamide, while preparing French fries without any prior treatment. The salient attributes of B. licheniformis UDS-5 L-asparaginase, such as greater thermal stability, salt stability and acrylamide reduction in starchy foods, highlights its possible application in the food industry.


Assuntos
Acrilamida , Asparaginase , Asparaginase/química , Acrilamida/análise , Acrilamida/química , Asparagina , Indústria Alimentícia
5.
Anal Bioanal Chem ; 416(7): 1541-1560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349534

RESUMO

The development and validation of a simple, comprehensive, and environment-friendly procedure to determine pesticide residues, naturally occurring and processing contaminants in roasted coffee is presented. A solid-liquid extraction of pesticides and mycotoxins with ethyl acetate and the concurrent partition of acrylamide to an aqueous phase follows a parallel analytical strategy that requires a single analytical portion to determine contaminants that are typically analyzed by dedicated single residue methods. The partition rules the lipids out of the aqueous extract before an "in-tube" dispersive solid phase microextraction (dSPME) for acrylamide retention. This is followed by the elution with buffer prior to injection. This extract is independently introduced into the system front end followed by the injection of the compounds from the organic phase, yet all spotted in the same run. A novel liquid chromatography high-resolution mass spectrometry (LC-HRMS) method setup enables the quantification of 186 compounds at 10 µg/kg, 226 at 5 µg/kg, and the acrylamide at 200 µg/kg for a total of 414 molecules, with acceptable recoveries (70-120%) and precision (RSD < 20%) making this strategy significantly faster and cost-effective than the dedicated single residue methods. Even though the presence of chlorpyrifos, acrylamide, and ochratoxin A was confirmed on samples of different origins, the findings were below the limit of quantification. During the storage of raw coffee, no proof of masking of OTA was found; however, condensation with glucose was evidenced during thermal processing experiments with sucrose by using stable isotope labeling (SIL). No detected conjugates were found in roasted nor in commercial sugar-added torrefacto samples, an industrial processing usually carried out above the decomposition temperature of the disaccharide.


Assuntos
Micotoxinas , Praguicidas , Café/química , Espectrometria de Massas em Tandem/métodos , Micotoxinas/análise , Praguicidas/análise , Acrilamida/análise
6.
Food Chem Toxicol ; 185: 114502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346572

RESUMO

This study aimed to estimate the Malaysian adult population's current dietary exposure and margin of exposure (MOE) to the carcinogenic processing contaminant, acrylamide. A total of 448 samples from 11 types of processed foods were collected randomly throughout Malaysia in the year 2015 and 2016. Acrylamide was analysed in samples using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) with a limit of detection (LOD) of 10 µg/kg and a limit of quantification (LOQ) of 25 µg/kg. The highest average level of acrylamide (772 ± 752 µg/kg) was found in potato crisps, followed by French fries (415 ± 914 µg/kg) and biscuits (245 ± 195 µg/kg). The total acrylamide exposure for the adult Malaysian was 0.229 and 1.77 µg/kg body weight per day for average and high consumers, respectively. The MOE were 741 and 1875 for the average consumer based on cancer and non-cancer effects of acrylamide, respectively. Meanwhile, for high consumers, the MOE is 96 for cancer and 243 for non-cancer effects. These findings indicate potential carcinogenic risks from acrylamide exposure among Malaysian adults, especially in Malay and other Bumiputra groups compared to Chinese, Indian, and other ethnic groups, while non-cancer effects appeared less concerning.


Assuntos
Acrilamida , Exposição Dietética , Exposição Dietética/análise , Cromatografia Líquida , Acrilamida/toxicidade , Acrilamida/análise , Espectrometria de Massas em Tandem , Alimentos , Carcinógenos/toxicidade , Carcinógenos/análise , Contaminação de Alimentos/análise
7.
J Food Sci ; 89(3): 1473-1484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258947

RESUMO

This study was conducted to identify high-risk factors and mitigation strategies for acrylamide formation in air-fried lotus root chips by studying the impact of various cooking parameters, including temperature, time, presoaking, and pre-seasoning treatments. The temperature and time had a surprisingly high impact on acrylamide formation. The chips prepared at high temperatures with longer cooking times contained an extremely high acrylamide content, reaching 12,786 ng/g (e.g., 170°C/19 min). A particularly concerning discovery was that the chips with extremely high acrylamide content (up to 17 times higher than the EU benchmark level for potato chips) did not appear overcooked or taste burnt. Higher cooking temperatures required shorter cooking times to properly cook lotus root chips for consumption. A high temperature with a short cooking time (170°C/13 min) greatly benefited acrylamide reduction compared to low temperature with a long cooking time (150°C/19 min). Presoaking in a 0.1% acetic acid solution and pre-seasoning with 1% salt reduced acrylamide levels by 61% and 47%, respectively. However, presoaking in water, vinegar solution, and citric acid solution did not significantly decrease the acrylamide content in the chips. Furthermore, some seasonings significantly increased acrylamide levels (up to 7.4 times higher). For the first time, these findings underscore the high risks associated with air-frying lotus root chips without considering these factors. This study also provides proper air-frying parameters and pretreatment strategies for minimizing acrylamide formation in air-fried lotus chips.


Assuntos
Acrilamida , Solanum tuberosum , Temperatura , Acrilamida/análise , Manipulação de Alimentos , Temperatura Alta , Culinária
8.
Compr Rev Food Sci Food Saf ; 23(1): e13260, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284574

RESUMO

Thermal processing techniques can lead to the formation of heat-induced toxic substances. Acrylamide is one contaminant that has received much scientific attention in recent years, and it is formed essentially during the Maillard reaction when foods rich in carbohydrates, particularly reducing sugars (glucose, fructose), and certain free amino acids, especially asparagine (ASN), are processed at high temperatures (>120°C). The highly variable free ASN concentration in raw materials makes it challenging for food businesses to keep acrylamide content below the European Commission benchmark levels, while avoiding flavor, color, and texture impacts on their products. Free ASN concentrations in crops are affected by environment, genotype, and soil fertilization, which can also influence protein content and amino acid composition. This review aims to provide an overview of free ASN and acrylamide quantification methods and mitigation strategies for acrylamide formation in foods, focusing on adding pulse flours to cereal-based snacks and bakery products. Overall, this review emphasizes the importance of these mitigation strategies in minimizing acrylamide formation in plant-based products and ensuring safer and healthier food options.


Assuntos
Asparagina , Grão Comestível , Asparagina/análise , Asparagina/química , Asparagina/metabolismo , Grão Comestível/química , Acrilamida/análise , Acrilamida/química , Acrilamida/toxicidade , Lanches , Carboidratos/análise , Carboidratos/química , Aminoácidos/análise
9.
Food Chem ; 439: 138063, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035494

RESUMO

Plant-based meat alternatives are gaining popularity as protein sources. However, pan-frying may lead to the formation of potentially harmful food contaminants. We investigated the formation of acrylamide and furanoic compounds in four different plant-based meat alternatives and two meat burger patties during pan-frying at 160 and 200 °C. The highest acrylamide contents (72. ± 7.7 and 69.2 ± 9.5 µg/kg, respectively) were found in soy flour- and sunflower-protein based patties fried at 200 °C. Unprepared pea and soy protein-based burger patties contained the highest furfural amounts (2832.8 ± 576.2 and 2683.0 ± 868.5 µg/kg, respectively). Furfuryl alcohol content was highest in soy flour-based patties and increased temperature-dependently up to 1120.9 ± 383.4 µg/kg. Based on the tolerable intake calculated by the EFSA Scientific Panel on Contaminants in the Food Chain, these amounts do not pose a health risk. Nevertheless, since plant-based novel food are being increasingly consumed, further investigations into the formation of food contaminants in novel processed foods are warranted.


Assuntos
Culinária , Produtos da Carne , Acrilamida/análise , Temperatura Alta , Carne/análise
10.
Food Addit Contam Part B Surveill ; 17(1): 46-55, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37982369

RESUMO

This study aimed to determine the acrylamide content in potato chips sold in Kermanshah, Iran and assess the potential health concerns associated with acrylamide exposure. HPLC-DAD was used to analyse 120 samples across 40 brands. The possible non-carcinogenic risk index for adults was below 1 for all 40 brands (100%), but for children it was only below 1 for 9 brands (22.5%) and above 1 for 31 brands (77.5%). Regarding the possible carcinogenic risk index, for adults only 1 out of 40 brands rated > 10-4, whereas for children all brands rated > 10-4. This shows that children's exposure to acrylamide through potato chips consumption in Kermanshah can be considered a risk on cancer and exposure of adults requires attention and monitoring. The best way to reduce acrylamide in potato chips and associated health risks is to improve the production process, especially temperature and time.


Assuntos
Acrilamida , Solanum tuberosum , Criança , Humanos , Acrilamida/análise , Irã (Geográfico) , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão , Carcinógenos/toxicidade , Carcinógenos/análise , Medição de Risco
11.
Curr Microbiol ; 81(1): 30, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052960

RESUMO

Acrylamide is the major by-product of the Maillard reactions in foods with the overheating processes of L-asparagine-rich foods with reducing sugars that usually allied with neurotoxicity and carcinogenicity. Several approaches have been used to prevent the formation of acrylamide, however, degrading the already formed acrylamide in foods remains unequivocal. Acrylamide hydrolyzing enzyme "amidohydrolase" is one of the most promising enzymes for acrylamide degradation in foods. So, amidohydrolase "amidase" from thermotolerant Aspergillus fumigatus EFBL was purified to their electrophoretic homogeneity by gel-filtration and ion-exchange chromatography, with overall purification folds 2.8 and yield 9.43%. The apparent molecular subunit structure of the purified A. fumigatus amidase was 50 kDa, with highest activity at reaction temperature of 40 °C and pH of 7.5 The enzyme displayed a significant thermal stability as revealed from the value of T1/2 (13.37 h), and thermal denaturation rate (Kr 0.832 × 10-3 min) at 50 °C, with metalloproteinic identity. The purified enzyme had a significant activity for acrylamide degradation in various food products such as meat, cookies, potato chips, and bread as revealed from the HPLC analysis and LC-MS analysis. So, with the purified amidase, the acrylamide in the food products was degraded by about 95% to acrylic acid, ensuring the possibility of using this enzyme in abolishing the toxic acrylamide in the foods products. This is the first report exploring the potency of A. fumigatus amidase for an actual degradation of acrylamide in foods efficiently. Further biochemical analyses are ongoing to assess the affinity of this enzyme for selective hydrolyses of acrylamide in foods, without affecting the beneficial stereochemical related compounds.


Assuntos
Acrilamida , Aspergillus fumigatus , Acrilamida/análise , Acrilamida/química , Amidoidrolases/química , Temperatura , Temperatura Alta
12.
Artigo em Inglês | MEDLINE | ID: mdl-37444119

RESUMO

Acrylamide, a thermal process contaminant, is generated in carbohydrate-rich foods processed at high temperatures (above 120 °C). Since acrylamide indicates a human health concern, the acrylamide contents of various foods and the dietary exposure of the population to acrylamide are very well investigated. Commonly consumed foods in the daily diet of individuals such as bakery products, potato products and coffee are major dietary sources of acrylamide. In recent years, dietary exposure levels of the population and mitigation measures for reducing acrylamide in different food products have gained importance to decrease the public's exposure to acrylamide. Since the complete elimination of acrylamide in foods is not possible, various mitigation measures to reduce acrylamide to levels as low as reasonably achievable have been developed and applied in the food industry. Mitigation strategies should be applied according to the different product categories during agricultural production, formulation, processing and final consumer preparation stages. The aim of this review is to evaluate formulation and processing strategies to reduce acrylamide in various cereal-based food products and to discuss the applicability of mitigation measures in the food industry by taking into consideration the organoleptic properties, nutritional value, cost and regulations in the light of current knowledge.


Assuntos
Acrilamida , Grão Comestível , Humanos , Acrilamida/análise , Grão Comestível/química , Análise de Alimentos , Dieta , Indústria de Processamento de Alimentos , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise
13.
Food Chem ; 427: 136655, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37364312

RESUMO

Coffee is a relevant source of dietary exposure for neoformed furan, alkyl furans and acrylamide. In this study, different statistical methods (hierarchical cluster analysis, correlation analysis, partial least squares regression analysis) were used for characterizing the formation of these process contaminants in green coffee beans roasted under the same standardized conditions. The results displayed a strong correlation between sucrose levels and furans in relation to the other sugars analyzed, while acrylamide formation was strongly related to the free asparagine. The data suggest that a sufficiently large amino acid pool in green coffee favors Maillard-induced acrylamide formation from asparagine, while reactions amongst the carbonyl-containing sugar fragmentation products leading to furan formation are suppressed. If the pool of free amino acids is small, it is depleted faster during roasting, thus favoring the formation of furans by caramelization, basically a sugar degradation process in which reactive carbonyl substances are generated and react together.


Assuntos
Coffea , Manipulação de Alimentos , Manipulação de Alimentos/métodos , Asparagina/química , Furanos/análise , Aminoácidos , Açúcares , Acrilamida/análise , Temperatura Alta , Coffea/química
14.
Anal Methods ; 15(18): 2275-2283, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37129466

RESUMO

This study aimed to investigate the distribution of acrylamide (AA) in food by developing a universal method for detecting AA in various foods and analyzing the levels of AA in 437 food samples collected from Southeast China. The developed method was simple, rapid, and widely applicable, with an average recovery rate range of 81.7-94.2% and a relative standard deviation range of 1.7-8.2%. The limit of detection (LOD, 2.0-3.4 µg kg-1) and limit of quantitation (LOQ, 6.0-10 µg kg-1) were also determined. AA was detected in all types of food, with a total detection rate of 76%, and the levels ranged from LOQ to 6020 µg kg-1. Potato chips had the highest level of AA (mean value of 504 µg kg-1), whereas pastries had the lowest level (mean value < 6.0 µg kg-1). Kruskal-Wallis analysis revealed significant differences in AA levels among different foods (H = 229.8, p < 0.05). The AA safety limit intake recommendations suggested that the intake of high-AA foods should be strictly controlled to reduce the risk of potential carcinogenic effects. The developed method provides a useful tool for monitoring AA levels in food.


Assuntos
Acrilamida , Contaminação de Alimentos , Acrilamida/análise , Contaminação de Alimentos/análise , Alimentos , Inquéritos e Questionários , China
15.
J AOAC Int ; 106(4): 899-908, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37137234

RESUMO

BACKGROUND: With the widespread consumption by children of cereal-based baby food, acrylamide contamination is a prevalent risk that may have carcinogenic consequences. OBJECTIVE: This study aims to develop and validate a modified QuEChERS protocol (quick, easy, cheap, effective, rugged, and safe) without solvent exchange, followed by rapid separation and accurate determination of acrylamide in cereal-based baby foods using reversed-phase (RP)-LC-MS/MS. METHODS: Samples were extracted using a modified QuEChERS protocol of the AOAC version and cleaned up with basic alumina. Separation was performed on a Phenomenex® Kinetex C18 column (100 Å × 3.5 µm × 4.6 mm × 150 mm) using a gradient elution program with a mobile phase of 10 mM ammonium formate-methanol. Determinations were conducted using electrospray ionization (ESI)-MS/MS in positive-ion mode. RESULTS: Basic alumina yielded clean extracts, resulting in acceptable recovery percentages and a tolerable matrix effect (ME) <5%. This allowed extraction without a solvent exchange step. Efficient separation was achieved at a retention time (tR) of 3.39 ± 0.05 min employing an RP-C18 column with core-shell properties in a relatively short analysis run time of only 5 min. Trueness, precision, LOD, LOQ, linearity range, and R2 results were 92.5-104.6%, RSD ≤12.2%, 5 µg/kg, 20 µg/kg, 4.0-1000.0 µg/kg, and > 0.9999, respectively. The test method applicability was demonstrated by proficiency testing (PT) and 50 real samples of cereal-based baby foods. Most of the tested samples were in violation of acrylamide's established European Union benchmark (40 µg/kg). CONCLUSION: Acetate-buffered QuEChERS protocol in conjunction with optimized amounts of basic alumina was confirmed as an efficient extraction protocol for acrylamide from cereal-based baby foods resulting in optimal method performance. Successful selection of the RP-C18 column is key for selective separation for acrylamide in a relatively short analysis run time. HIGHLIGHTS: The modified AOAC QuEChERS protocol with a dispersive solid phase extraction (d-SPE) of basic alumina assisted in reducing the ME to tolerable levels while maintaining acceptable method performance. The use of an RP-C18 column with core-shell properties enabled a rapid and accurate acrylamide determination.


Assuntos
Acrilamida , Espectrometria de Massas em Tandem , Criança , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Acrilamida/análise , Grão Comestível/química , Solventes , Extração em Fase Sólida/métodos , Alimentos Infantis/análise , Cromatografia Líquida de Alta Pressão/métodos
16.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110710

RESUMO

Coffee is the third-largest beverage with wide-scale production. It is consumed by a large number of people worldwide. However, acrylamide (AA) is produced during coffee processing, which seriously affects its quality and safety. Coffee beans are rich in asparagine and carbohydrates, which are precursors of the Maillard reaction and AA. AA produced during coffee processing increases the risk of damage to the nervous system, immune system, and genetic makeup of humans. Here, we briefly introduce the formation and harmful effects of AA during coffee processing, with a focus on the research progress of technologies to control or reduce AA generation at different processing stages. Our study aims to provide different strategies for inhibiting AA formation during coffee processing and investigate related inhibition mechanisms.


Assuntos
Acrilamida , Manipulação de Alimentos , Humanos , Acrilamida/análise , Reação de Maillard , Carboidratos , Asparagina
17.
J Food Prot ; 86(1): 100001, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916578

RESUMO

Acrylamide as a probable human carcinogen can be produced via the Maillard reaction between asparagine and reducing sugars at high temperatures during food processing. In this study, the concentration of acrylamide in industrial and traditional popcorn sold in Tehran, Iran in the spring of 2021 was analyzed. Industrial popcorn is popcorn that has a manufacturing license from the health authorities. Traditional popcorn is sold by retailers in entertainment centers. Estimated daily intake (EDI) and margin of exposure (MOE) for neurological changes and neoplastic effects have been estimated. The values of limit of detection (LOD) and limit of quantitation (LOQ) were determined as 3.1 and 10.2 ng/mL, respectively. The amount of acrylamide was measured ranging from nondetectable up to 14.8 mg/kg. Acrylamide was detected in 86% of samples. The level of acrylamide in most popcorn samples has been detected as greater than LOD and LOQ. The average content of acrylamide in traditional popcorn was determined to be 7.7 mg/kg which was higher than the average value of 3.08 mg/kg found in industrial popcorn. Significant difference was observed between industrial and traditional popcorn samples. The average intake of popcorn for adolescent population was estimated as 2 g per day. EDI was calculated as 0.3 and 0.12 µg/kg of body weight per day for the traditional and industrial popcorn. These results indicated that popcorn can be considered a potential source of acrylamide exposure in the adolescent population. Furthermore, if the actual MOEs for neurological and neoplastic effects are estimated to be less than 10 000, it is considered a health risk. In this study, MOE has been estimated lower than 10 000 for neurological changes and neoplastic effects.


Assuntos
Acrilamida , Contaminação de Alimentos , Adolescente , Humanos , Acrilamida/análise , Irã (Geográfico) , Contaminação de Alimentos/análise , Manipulação de Alimentos , Medição de Risco
18.
Artigo em Inglês | MEDLINE | ID: mdl-36919530

RESUMO

Maximum levels of acrylamide have been set by the European Commission (EU) 2017/2158 for several food products due to its carcinogenic properties. Although not regulated yet, European buyers are requesting maximum levels of 0.8 mg kg-1 in artisanal panela (raw cane sugar) from northern Peru. Panela in this area is produced by 600 small holder farmers and exportation guarantees a respectable price in an area with a high index of poverty. The objective here was to determine the cause of high acrylamide concentrations in panela to inform cost effective minimisation strategies. We monitored panela production from field to final product to understand the scale of the problem, identify the cause of acrylamide formation, as well as the effect of storage on its concentration. We also determined the utility of rapid kits for asparagine quantification. Our results indicate that high acrylamide levels are a widespread problem (85% of samples analysed) and there was a correlation between acrylamide and asparagine of R2 = 0.58 (p < 0.001), but not with any post-harvest processing variable. We estimate that with a concentration of asparagine of <0.1 g l-1 in sugarcane juice, the threshold set by buyers for acrylamide can be met. Potential solutions to reduce asparagine include varietal selection, improved agronomic practices and the use of asparaginase during panela production. However, any proposed measure should be applicable in the context of the rural Peru. Additionally, we confirm the utility of rapid and low-cost kits for measuring asparagine. This pioneering study provides a baseline for effective management for acrylamide minimization in panela.


Assuntos
Acrilamida , Asparagina , Asparagina/análise , Peru , Acrilamida/análise , Açúcares , Carcinógenos/análise , Temperatura Alta
19.
Food Chem ; 416: 135793, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898335

RESUMO

Due to unique chemical structure, flavonoids are secondary metabolites with numerous biological activities. Thermal processing of food usually produces some chemical contaminants, which cause an adverse effect on food quality and nutrition. Therefore, it is vital to reduce these contaminants in food processing. In this study, current researches around the inhibitory effect of flavonoids on acrylamide, furans, α-dicarbonyl compounds and heterocyclic amines (HAs) were summarized. It has been shown that flavonoids inhibited the formation of these contaminants to varying degrees in chemical or food models. The mechanism was mainly associated with natural chemical structure and partly with antioxidant activity of flavonoids. Additionally, methods and tools of analyzing interactions between flavonoids and contaminants were discussed. In summary, this review demonstrated potential mechanisms and analytical strategies of flavonoids in food thermal processing, providing new insight of flavonoids applying on the food engineering.


Assuntos
Flavonoides , Manipulação de Alimentos , Flavonoides/análise , Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Antioxidantes/análise , Acrilamida/análise
20.
Food Res Int ; 164: 112409, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737990

RESUMO

Potato-based products contribute largely to the daily intake of acrylamide. In addition to potato crisps, the European Commission has included veggie crisps in the list of foods that should be monitored for their acrylamide content. In the present study, acrylamide content in potato and veggie chips (sweet potato, beetroot and carrot) and their bioaccessibility after in vitro digestion was assessed. The non-bioaccessible fraction was also submitted to in vitro fermentation under colonic conditions. Faecal samples from volunteers of three age groups (children, adolescents and adults) were used to evaluate the microbiota effect on the acrylamide availability. Sweet potato chips exhibited the highest acrylamide content (2342 µg/kg), followed by carrot (1279 µg/kg), beetroot (947 µg/kg) and potato chips (524 µg/kg). After in vitro digestion, acrylamide bioaccessibility was significantly lower in veggie chips (59.7-60.4 %) than in potato chips (71.7 %). Potato and sweet potato chips showed the significantly lowest acrylamide content in the non-bioaccessible fraction (22.8 and 24.1 %, respectively) as compared with beetroot chips (28.4 %). After the fermentation step, acrylamide percentage in the soluble fraction of veggie chips ranged from 43.03 to 71.89 %, the highest values being observed in sweet potato chips fermented with microbiota from children. This fact would involve that the acrylamide was released from the non-bioaccessible fractions by the microbiota. These findings point out that the levels of potentially absorbable acrylamide after the complete gastrointestinal process could be modulated by both the food matrix composition and the microbiota. These factors should be further considered for a more precise risk assessment of dietary acrylamide in humans.


Assuntos
Daucus carota , Solanum tuberosum , Adulto , Criança , Adolescente , Humanos , Acrilamida/análise , Fermentação , Manipulação de Alimentos , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...